

研究タイ								
セラミック微粒子の液相精密合成								
氏名:	榎本 / 尚也		E-mail :	enomoto@ariake-nct.ac.jp				
職名:	教授		学位:	博士(工学)				
所属学会·協会:		日本セラミックス協会、日本ソノケミストリー学会、日本化学会						
キーワード:		超音波化学、ソノプロセス、単分散球、ナノ粒子						
技術相談 提供可能技術:		・超音波の物理化学作用と微粒子合成への応用 ・磁気ナノ粒子の精密合成 ・ナノ粒子の核生成を制御するための溶液構造設計						

研究内容:

単分散セラミック球状粒子は、その真球状の形態と狭い粒度分布から個々の粒子自体がスペーサー材料として有用 であるほか、図1に示すような自己組織化が可能である。斯様な高次構造形成により多様な新機能の発現が期待され るとともに、最密充填構造によって達成される理論充填密度(74%)を有する圧粉体を用いて焼結動力学の温故知新 が期待される。高い単分散性を実現するには、微粒子の核生成と成長を精密に制御する必要があるが、それが実用レ ベルに達しているセラミック材料はシリカ(SiO₂)に限られ、しかも煩雑な分級工程を経て単分散性を維持している。本 研究室では、精密なプロセス制御によって種々の(目指すは"あらゆる")セラミック単分散球を再現性良く合成し、核生 成制御に介在する数多くの Black Box の開封を試みる。図2は、超音波照射と溶媒制御によって達成されたマグネタ イト微粒子の TEM 像である。30 nm 付近で粒径を揃えたマグネタイト微粒子は優れた磁気特性を示し、医療応用に向 けた高い付加価値が期待される。

図1 単分散セラミック球の規則配列

図2 ソノプロセスによるマグネタイト微粒子

提供可能な設備・機器:

名称·型番(メーカー)					
強力超音波発生機(本多電子など)					
微弱超音波発生機(協和熟成科学)					

Precise synthesis of ceramic nanoparticles in liquids

Name Naoya Enomoto		Enomoto	E-mail	enomoto@ariake-nct.ac.jp		
Status						
Affiliatio	ns	Creative Engineering De (Applied Chemistry Co				
Keywords		sonochemistry, ultrasound, monodispersed spheres, ceramic nanoparticles				
Technical Support Skills		 Application of power ultrasound to ceramic processes Soft sonication to starting solutions for synthesis of spheres Precise synthesis of magnetic nanoparticles 				

Research Contents

Monodispersed ceramic spheres have an exact spherical shape and a very narrow size distribution. They can be self-assembled, as shown in Fig. 1, for such novel properties as photonic bandgap due to colloidal crystallinity. Also, my future interest is to investigate the sintering fundamentals by using the ideal closest-packing of a ceramic powder compact having a 74% relative density (or higher). At present, however, the only monodispersed ceramic sphere that we can use in practice is silica (SiO₂). In order to produce finely uniform spheres with a definitely-desired size, a precise control of nucleation and growth of nanoparticles is necessary. My approach is to employ the ultrasonic technique for a novel synthesis of ceramic nanoparticles. Figure 2 shows TEM image of magnetite nanoparticles with relatively uniform size and good crystallinity. They were prepared by a controlled ultrasonication and solvent adjustment, and are expected for medical applications.

Fig. 1 Self-assembled ceramic spheres

Fig. 2 Sonoprocess-derived magnetite nanoparticles

Available Facilities and Equipment	
Power sonicators (Honda Electronics Co. etc)	
Soft sonicators (Kyowa Jukusei Kagaku Co.)	

