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Research Contents

The geometric classification of minimal types is a very important research subject for not only pure model
theory but also applications of model theory to algebraic and compact analytic geometries. In 1993,
Hrushovski solves the Mordell-Lang conjecture for function fields by the geometric classification of strongly
minimal sets with generalized Zariski topology, so called Zariski geometry. Zilber conjectured that the
geometries on strongly minimal sets are either trivial (no structure) or linear (vector space) or algebraic
(algebraically closed field). In 1988, Hrushovski constructs a new strongly minimal set by amalgamating
finite ternary graphs with collapse property, whose geometry satisfies CM-triviality. CM-triviality forbids
the incident relation on points, lines and planes. Countably infinite hypergraph by amalgamating certain
finite hypergraphs are called “generic structure”. Generic structures yield important examples for
model-theoretically non-geometric various properties. I show that the geometry on hypergraphs which have
amalgamation over closed sets (all generic structures have amalgamation over closed sets) is CM-trivial,
which is reported at a special invited talk of the annual conference of the mathematical society of Japan in
2005. At Logic Colloquium 2007 I give a talk that CM-triviality in the real sort is equivalent to
CM-triviality with geometric elimination of imaginaries(=GEI). At 10t Asian logic conference in 2008, I
report that any rosy CM-trivial theories have weak canonical bases and CM-trivial o-minimal structures
with elimination of imaginaries must be modular. At Model Theory Conference in Seoul 2010, I introduce
strong non-3-ampleness, after the conference I show that non-2-ampleness=CM-triviality implies strong
non-3-ampleness implies non-3-ampleness. MTW denotes Model Theory Workshop. At RIMS MTW 2020, 1
give two talks.1: Any indiscernible sequence is Morley over its kernel in any rosy theories having weak
canonical bases. 2: GEI is equivalent to weak elimination of imaginaries(WEI) in any rosy theory having
weak canonical bases if any type over algebraically closed sets in the real sort is thorn-forking stationary. At
RIMS MTW 2020, by a suggestion of Byunghan Kim, ”Imaginaries, stationarity of types and
stability’ 'which is submitted to RIMS Kokyuroku, shows that thorn-forking coincides with forking and
stability follows from the assumption that any type over models is thorn-forking stationary. To RIMS
Kokyuroku for RIMS MTW 2021, I submit ““Pillay’s alternative definition for WEI coincides with Poizat’s
original one”. After RIMS MTW 2022, I begin to seek Boolean algebras and strongly minimal sets having
GEI without WEI. I also research whether thorn U-rank=1 geometric structure is n-ample if and only if its
H-structure is n-ample for any n=2. Now I am writing a paper which shows that one-basedness is
equivalent to weak one-basedness and the existence of weak canonical base for any strong type.
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