

研究タイ						
氏名:	川村 淳浩/KAWAMURA Atsuhiro		E-mail :	kawamura@mech.kushiro-ct.ac.jp		
職名:	教授		学位:	博士(工学)、技術士(機械部門)		
所属学会·協会:		日本機械学会,日本実験力学会,日本エネルギー学会,エネルギー・資源学会, 日本太陽エネルギー学会,木質炭化学会,日本燃焼学会,自動車技術会, SAE International,日本生物環境工学会				
キーワード:		再生可能エネルギー,省エネ,石油代替,エネルギー変換,環境影響·経済性評価,植物工場,ICT				
技術相談 提供可能技術:		バイオマス直接熱利用、クリンカ(溶融灰)、資源循環型地域社会、環境保全、燃焼、高効率、 低排出ガス、安全工学、防災、代替エネルギー、バイオガス、地域社会、FEMS、住環境、 HEMS、太陽エネルギー、スマートエネルギー、二酸化炭素施肥など				

研究内容:

提供可能な設備・機器:

名称·型番(メーカー)					
完全人工光型植物工場研究施設:TAF-13(エスペックミック)12.7m ²	太陽光利用型植物工場研究施設:TPFS-14(エスペックミック)13.5m2				
エンジ`ンベンチ, 分析計:DA10UW(FC デザイン), PG-300(HORIBA)	排ガス測定器:MEXA-584L(HORIBA), testo340(testo)				
赤外線サーモグ ゙ラフィ: H2640(NEC・Avio)	北方型実験住宅:木造軸組構法 66.24m ²				

	italiz	^{ly:} zation of Environment through Energy ration and Smart Energy				
Name	KAWA	AMURA Atsuhiro E-mail kawamura@mech.kushiro-ct.ac.jp				
Status	Profes	Professor, Ph.D., P.E.Jp				
Affiliations		The Japan Society of Mechanical Engineers, The Japanese Society for Experimental Mechanics, The Japan Institute of Energy, Japan Society of Energy and Resources, Japan Solar Energy Society, The Japan Carbonization Research Society, Combustion Society of Japan, The Society of Automotive Engineers of Japan, SAE International, Japanese Society of Agricultural, Biological and Environmental Engineers and Scientists				
Keywords		Renewable Energy, Energy Conservation, Alternative Energy, Energy Conversion, Energy Efficiency, Environmental Impact, Plant Factory, ICT				
Technical Support Skills		Biomass Combustion, Clinker, Zero-waste Community, Environmental Conservation, Combustion, Low-emission, Safety Engineering, Disaster Prevention, Biogas, FEMS, HEMS, Solar Energy, Smart Energy, Carbon Dioxide Fertilization				

Research Contents https://researchmap.jp/read0152593/?lang=en

Available Facilities and Equipment

- 1. Research on the Efficiency Improvement of Batch-type Small-diameter Bio-coke Production Process (in Japanese), Journal of JSEM, 19(3) 203-208, Oct, 2019. [Peer-reviewed]
- Studies on Producing of Woody Biomass Fuel and Utilizing of Combustion Ash Production of Small Diameter Bio-coke and Characterization of Blend Firing - (in Japanese), Journal of Smart Processing, 7(2) 51-56, Mar, 2018. [Peer-reviewed]
- 3. A Study of the Exhaust Emission Performance of a Cartridge-gas Fueled Portable Generator (in Japanese), Journal of the Japan Institute of Energy, 96(12) 525-531, Dec 1, 2017. [Peer-reviewed]
- 4. A Study of Home Energy Management Systems for Northern Houses (in Japanese), Journal of the Japan Institute of Energy, 96(4) 112-120, 2017. [Peer-reviewed]
- 5. Study on Clinker Formation Mechanism of Biomass Solid Fuel (in Japanese), Journal of Smart Processing, 5(2) 140-144, Mar, 2016. [Peer-reviewed]
- 6. Development of Solar Heating using Information and Communication Technologies for Northern Houses, Proceedings of SHC 2013, Freiburg, Germany, Energy Procedia, 48, 588-597, 2014. [Peer-reviewed]
- 7. Research on a Low Energy Consumption House using Renewable Energies and Information and Communication Technologies, International Symposium on Innovative Materials for Processes in Energy Systems (IMPRES) 2013 Proceedings, 299-303, Sep, 2013. [Peer-reviewed]
- 8. Development of Hydrogen Internal Combustion Engine System for Heavy Duty Vehicles (in Japanese), Transactions of Society of Automotive Engineers of Japan, 42(4) 909-914, Jul, 2011. [Peer-reviewed]
- 9. Development Project of a Multi-cylinder DISI Hydrogen ICE System for Heavy Duty Vehicles, SAE Technical Papers, 2010. [Peer-reviewed]
- 10. Summary and Progress of the Hydrogen Ice Truck Development Project, SAE International Journal of Commercial Vehicles, 2(1) 110-117, 2009. [Peer-reviewed]
- 11. Application Problem of Biomass Combustion in Greenhouses for Crop Production (in Japanese), Journal of High Temperature Society, 33(1) 14-20, Jan, 2007. [Peer-reviewed]
- 12. Evaluation of Cogeneration System Applied to Greenhouses (in Japanese), Journal of the Japan Institute of Energy, 85(5) 390-397, 2006. [Peer-reviewed]

Solar-powered Plant Factory Research Facility / TPFS-14	
Exhaust or Flue Gas Analyzer / MEXA-584L, testo340	
Experimental Northern House / 66m ²	