

研究タイトル:

エアロゾルプロセスによる微粒子合成技術

氏名: 小寺 喬之 / KODERA Takayuki E-mail: kodera@tsuruoka-nct.ac.jp

職名: 准教授 学位: 博士(工学)

所属学会・協会: 化学工学会、日本セラミックス協会、電気化学会、日本化学会

キーワード: 粉体、微粒子、微粒子合成プロセス、歯科材料、電池材料、金属粒子、無機材料

技術相談

・無機粉体およびその合成に関する技術 ・無機粉体の製造技術および製造装置

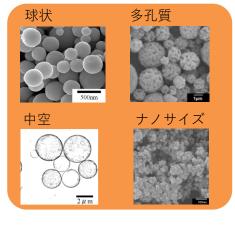
提供可能技術: ・粉体を原料とした酸化物材料、電池材料、無機材料、金属材料の開発および評価

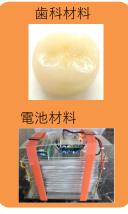
研究内容: 微粒子合成、微粒子を使用した材料開発、粒子特性評価、微粒子合成プロセス

<研究シーズ、研究対象、提供できる評価>

- エアロゾルを微粒子に転換(連続プロセス)
- 材料特性向上や新機能発現のモデルに微粒子を カスタマイズ

化学反応


微粒子


微粒子合成

材料開発

粒子特性評価

装置開発

など

液相プロセスの微粒子合成法をシーズとして保有している。本シーズを活用して歯科材料分野および電池材料分野を対象とし、材料特性向上のための微粒子の研究、ならびに新機能発現のための微粒子の研究に取り組んでいる。また、歯の再生治療の研究にも取り組んでいる。

本シーズによる微粒子合成装置は実験室レベルで開発済みで、プロトタイプの開発に取り組んでいる。

提供可能な設備・機器:

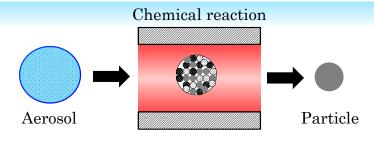
名称・型番(メーカー)					
粉体製造装置					
比表面積/細孔分布					
粒径分布測定					
曲げ強度測定					

Synthesis Technique of the Powder by Aerosol Process

Name	Takayuki KODERA		E-mail	kodera@tsuruoka-nct.ac.jp	
Status	Associate Professor				N
Affiliations		The society of chemical The ceramic society of j The chemical society of The electrochemical so	japan of japan		
Keyword	Yeywords Powder, Particles, Dental materials, Battery, Metal fine-powder, Spray		pyro		
Technical • Preparation of the powder • Preduction technique and preduction of		ation apparatus of the povidor			

Research Contents

Support Skills


Study of synthesis process with the energy-saving technique and mass production technique for the

Production technique and production apparatus of the powder

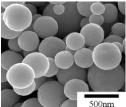
• Development and characterization of the inorganic materials

Study of the microstructure and particle size control for the materials in the fields of medical and energy.

<Aerosol process>

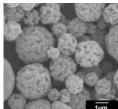
The aerosol which was generated from aqueous solution was pyrolyzed to form oxide or metal particle.

Features of process

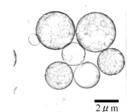

- · Economical process (Low cost, saving energy)
- · Simple and continuous process
- · High speed production (within one minute)

Features of particles

- · Spherical shape
- · Homogeneous composition
- · Particle size from micrometer to nanometer
- · High dispersibility
- · High purity


<Examples of the prepared particles>

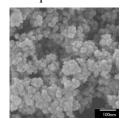
Spherical particles


- Chemical products
- Battery materials
- Electronic materials

Porous particles

Battery materials

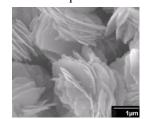
- Adsorption materials
- Catalyst materials


Hollow particles

Thermal insulating

materials

Electronic materials


Nanoparticles

Catalyst materials

- Medical materials
- Electronic materials

Plate-like particles

Cosmetics

- Battery materials
- Electronic materials

Available Facilities and Equipment

The production apparatus of the powder	